“Theorem on Function Values”

如果你也在线性代数linearalgebra这个学科遇到相关的难题,请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 linearalgebra™长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,linearalgebra™也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

0.38 Theorem Concerning the Values of a Function_All the values which can be assumed by a function of any number of variables \(f(x,y,z\ldots)\) are given by the formula_\[abc\ldots k+u(a+b+c+\ldots+k),\]_in which \(u\) is absolutely indeterminate, and \(a,b,c\ldots,k\) are the coefficients of the development of \(f\).__Demonstration.–_It is sufficient to prove that in the equality\[f(x,y,z\ldots)=abc\ldots k+u(a+b+c+\ldots+k)\]\(u\) can assume all possible values, that is to say, that this equality, considered as an equation in terms of \(u\), is indeterminate.In the first place, for the sake of greater homogeneity, we may put the second member in the form\[u^{\prime}abc\ldots k+u(a+b+c+\ldots+k),\]for\[abc\ldots k=uabc\ldots k+u^{\prime}abc\ldots k,\]and\[uabc\ldots k

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注