Mathematical Notes: The Solution and Resultant of Elimination

如果你也在线性代数linearalgebra这个学科遇到相关的难题,请随时添加vx号联系我们的代写客服。我们会为你提供专业的服务。 linearalgebra™长期致力于留学生网课服务,涵盖各个网络学科课程:金融学Finance,经济学Economics,数学Mathematics,会计Accounting,文学Literature,艺术Arts等等。除了网课全程托管外,linearalgebra™也可接受单独网课任务。无论遇到了什么网课困难,都能帮你完美解决!

\]This form of the solution conforms most closely to common sense: since \(x^{\prime}\) contains \(b\) and is contained in \(a^{\prime}\), it is natural that \(x\) should be equal to the sum of \(b\) and a part of \(a^{\prime}\) (that is to say, the part common to \(a^{\prime}\) and \(x\)). The solution is generally indeterminate (between the limits \(a^{\prime}\) and \(b\)); it is determinate only when the limits are equal,\[a^{\prime}=b,\]for then\[x=b+a^{\prime}x=b+bx=b=a^{\prime}.\]Then the equation assumes the form\[(ax+a^{\prime}x^{\prime}=0)=(a^{\prime}=x)\]and is equivalent to the double inclusion\[(a^{\prime} indeterminate _.We shall reach the same conclusion if we observe that (\(a+b\)) is the superior limit of the function \(ax+bx\) and that, if this limit is 0, the function is necessarily zero for all values of \(x\),\[(ax+bx^{\prime}

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注